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R E S I S T A N C E  O F  T H E  E L E C T R O D E S  OF A R A I L G U N  

W I T H  A D I S T R I B U T E D  J U M P E R  

A. D. Lebedev,  B. A. Uryukov,  and V. V. Savichev UDC 620.193.1:629.036.72 

Results of a calculation of the resistance of railgun electrodes with distributed and concentrated 
current jumpers are reported. The problem was solved using the quasistationary equation 
of magnetic field diffusion. Results of exact and approximate solutions are given. For the 
complicated pattern of current distribution on the boundary, it is proposed that the voltage 
drop rather than the electrode resistance be calculated. 

The resistance to the current flow through railgun electrodes with a current jumper moving along the 
electrodes differs from the resistance in the "stationary" design. This is due to the fact that the current is 
not distributed over the entire cross section of the electrode but is limited by a narrow area adjacent to the 
working surface. The effect of a "fast" skin layer and its manifestations have been considered in a number of 
papers (see, for example, [1, 2]). The resistance, in particular, was calculated in [3]. A diagram of the plane 
problem is shown in Fig. 1: a current passes through the electrodes within the skin layer $ and through the 
jumper having point contact I with the electrodes in the longitudinal-section plane. Solution was performed 
using the quasistationary equation of magnetic-field diffusion in a coordinate system attached to the jumper. 
In the approximation of a "boundary layer," the variability of the transverse component of the current density 
jy in the x direction is far less than the variability of the longitudinal component jz in the y direction. This 
equation can be written as 

OB O2B 
poaV-~x = Oy 2' (1) 

where V is the velocity of motion of the electrode's mass relative to the contact, p0 is the magnetic permeability 
of vacuum, a is the conductivity of the medium, and B is the magnetic-field induction. 

Assuming that the magnetic-field induction depends only on one self-similar variable 7/m y/v/-~, it is 
po6sible to reduce Eq. (1) to an ordinary differential equation of the second order. Solving this equation, we 
obtain the following expression for the longitudinal current density: 

J'=b-V ~x exp( Tx / (2) 
(b is the width of the electrode and J is current flowing through the electrode). Hence it follows that the 
characteristic cross-sectional dimension of the current-flow region in the electrode is 6 = J/bjx (y = O) = 

In deriving relation (2), we used the condition that the cross-sectional dimension of the electrode is 
much greater in height than 6. 
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Fig. 1. Current  flow pat tern between the electrodes and the jumper:  
I and II are concentrated and distributed jumpers .  

The resistance R to the  current passage through the electrode is determined from the expression for 
Joule heat release in the cross section of the electrode, 

written in s tandard electrotechnical form as 
0 

(3) 

�9 2 ['dR'~ 
Q = 1" ~,-~'z )" (4) 

Hence, R- -  1/br 
A similar approach is applicable for the case of a distr ibuted jumper  II (see Fig. 1). We assume that  

the dependence B(z ,  y) has the  form 

B = / (x ) f l ( r / ) ,  (5) 

where r /=  y#oaV/2x is a self-similar variable. 
Substi tut ion of relation (5) into the  initial equation (1) shows that a solution in the form (5) can be 

obtained only if 

fCx)_  = ax  (6) 

where a and a are constants.  In this case, the equation for/3 has the form 

+ r/~ - 24/3 = 0. (7) 

The  particular case a = 0 corresponds to the solution described above [see formula (2)]. The  general solution 
of Eq. (7) can be represented in elementary functions if 24 is an integer (24 = n) [4]: 

/3 = e _ ( . 2 m  + c ,  
dr/= 

(cl are c2 are integration constants).  
Assuming, as before, that  the cross-sectional dimension of the electrode is much larger than the 

characteristic cross-sectional dimension of the zone of magnetic-field concentration, we obtain the boundary 
condition 

/ 3 4 0  for q---~oo. 

Hence it follows that  cl = 0, and c2 can be combined with the constant a. Thus, the expression for/3 takes 
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TABLE 1 

R ")'exact "Tapprox ~,  ~0 

1 
1.3013 
1.5621 
1.7902 
1.9941 

0.8862 
1.2533 
1.5350 
1.7724 
1.9817 

11.4 
3.69 
1.73 
1.00 
0.62 

the form 

From the Maxwell equations 

we obtain 

o o  

dr/" 
71 

1 0 B  1 0 B  j x = - - - -  j~= 
#o Oy' #o Ox 

I trV dfl f(:r,) (fl r ! dfl) 
= - i ( x )  J "  = - . o - - 7  �9 

Using (3) and (4) and taking into account that on the surface of the electrode (y = 0) 

B = B0 = #oJ  
b 

(J  is the local current strength in the electrode cross section), we obtain 

1 2 ~ o V z  , , 
a=bV 7tn), 

(8) 

(9) 

(10) 

(11) 

where the factor -y(n) depends on the law of current passage through the boundary between the electrode and 
the jumper: 

co 2 

Table 1 gives results of exact and approximate calculations of 7 for several values of n and the relative 
error of the approximate calculation of 6. It can be seen that for the case of a distributed jumper (n # 0), the 
resistance of the electrode is higher than for the case of a concentrated jumper (n = 0). 

The exact solution is applicable for a limited class of laws of current passage through the boundary 
when the normal current density is the same exponential function of the length throughout the working surface 
of the electrode. 

In real situations, there can be several jumpers and the current flow through the zones of contact with 
the jumpers can obey different laws. 

We consider an approximated solution of the problem using a method similar to the Goodman's method 
of "heat-balance integral" [5], which has been successfully used in solutions of complicated problems of heat 
transfer (see, for example, [6, 7]). We integrate Eq. (1) over the y coordinate, using the above-mentioned 
condition that the cross-sectional dimension of the electrode is much larger than g: 

OB 
laoaV-~z Bdy = y=0" (12) 

0 
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Let the magnetic-induction distribution be specified as 

B =  B0 exp ( -  ~ ) ,  (13) 

where B0 is a known quantity defined by relation (10) and 8 is an unknown function of the z coordinate. 
Substituting (13) into (12), we obtain 

d /3o 
d-'~ B06 = (14) 

#oaV6" 

In this case, according to (8), we have j~ = -(Bo/#o,5)exp(-y/6), and, hence, using (10), from (3) 
and (4) we obtain 

dR 1 
dx 2ba~" (15) 

The dependence 6(x) is found from (14): 

d_d(j~) 2 - 2J 2 (16) 

The error of this calculation can be determined by comparing it with the exact model. Within the framework 
of the exact solution according to (6) and (9), we have jy(0) ~ x a-1 and jy .~ x a. Then, relation (16) leads to 

62 = 2 z 
n + 1 #oaV' 

and from (15) we obtain 

R = b ~  n+l#~  a 

Using (11), we find that in the approximated model, 7(n) = k / ( r /4) (n  + 1). As n increases, the 
difference between the approximate and accurate calculations decreases. In particular, when the current 
transfer is uniform (n = 2), the difference is about 2%. 

For a complicated pattern of the current flow distribution on the boundary, it is convenient to find 
the voltage drop rather than the resistance of one or another segment of the electrode. For this, relation (4) 
should be written as Q = -J(dU/dx) ,  where U is the potential in the volume of the electrode. Then, using 
(3), (10), and (13) we obtain dU/dz = Bo/(2#oa6). Using (14), we find that 

V 
U = Uo + -~ Bo6 (17) 

(U0 is the potential for 6 = 0, i.e., on the leading edge of the first jumper). 
The dependence of/3o//on the x coordinate is determined from (14): 

Z 

(B06)2 2#0 /" .5 = dx. (18) 
0 

Combining (17) and (18), we obtain the required solution for the voltage drop on a segment of the electrode. 
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-02- 

16842). 
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